兰格汉氏细胞组织球增生症
兰格汉氏细胞组织球增生症 | |
---|---|
异名 | 组织球增生症 X (Histiocytosis X) |
![]() | |
兰格汉氏细胞组织球增生症的显微照片,显示特征性的肾形兰格汉氏细胞,伴有大量嗜酸性粒细胞。苏木素-伊红染色 (H&E stain)。 | |
症状 | 骨痛、皮疹、淋巴结肿大、肝脾肿大、呼吸困难、尿量增多等 (视乎受累器官)[1][2][3] |
并发症 | 骨骼畸形、病理性骨折、尿崩症、生长迟缓、神经退行性病变、听力障碍、肺纤维化、肝硬化、继发性恶性肿瘤[4][5][6][7][8] |
起病年龄 | 多见于儿童 (1-4岁高峰),成人亦可发病[9] |
病程 | 可为自限性,亦可为慢性或复发性 |
类型 | 单系统型 (单灶/多灶),多系统型 (有/无风险器官受累)[1][2] |
病因 | MAPK 信号通路基因突变 (主要是 BRAF, MAP2K1)[10][3][11][12] |
风险因素 | 吸烟 (与成人肺部 LCH 相关)[13][14][15] |
诊断方法 | 组织活检病理学检查,免疫组织化学染色 (CD1a+, Langerin+),基因突变检测,影像学检查[1][2] |
鉴别诊断 | 脂溢性皮炎、异位性皮肤炎、感染、其他组织细胞增生症、淋巴瘤、白血病等 |
预防 | 避免吸烟 (可预防部分成人肺部 LCH) |
治疗 | 观察、局部治疗、手术、化疗 (长春花碱、泼尼松、克拉屈滨、阿糖胞苷等)、靶向治疗 (BRAF/MEK/ALK 抑制剂)、放射治疗[1][2][16] |
药物 | 化疗药物、皮质类固醇、靶向药物 (维罗非尼、达拉非尼、曲美替尼等)[1][2][16] |
预后 | 单系统疾病预后良好 (儿童接近100%生存率),多系统伴风险器官受累者预后较差,但靶向治疗改善显著。长期并发症常见。[9][17][4][5] |
患病率 | 儿童约每年 2-9/百万人,成人约每年 1-2/百万人[18][19][20][9][21] |
死亡数 | 主要与多系统伴风险器官受累、治疗并发症或继发性恶性肿瘤相关[17] |
分类和外部资源 | |
医学专科 | 血液学 |
ICD-11 | 2B31.2 |
ICD-10 | C96.6 |
ICD-9-CM | 202.5 |
OMIM | 604856、246400 |
DiseasesDB | 5906 |
eMedicine | 1100579 |
Orphanet | 389 |
兰格汉氏细胞组织球增生症(英语:Langerhans Cell Histiocytosis, LCH),旧称组织球增生症 X (Histiocytosis X),是一种由骨髓中骨髓细胞系祖细胞异常增生和分化引起的组织细胞增生症。[22] 这些异常细胞具有兰格汉氏细胞的某些特征,特别是表达 CD1a 和 CD207(兰格林蛋白, Langerin)。[3][10] 这些细胞浸润一个或多个器官系统,招募其他免疫细胞(如T淋巴细胞、巨噬细胞、嗜酸性粒细胞),形成肉芽肿样病灶,导致组织损伤。[3][10] LCH 的临床表现非常多样,轻则出现单个自愈性病灶,重则可发展成危及生命的多系统疾病。[1][2]
病因与发病机制
[编辑]LCH 的核心发病机制是有丝分裂原活化蛋白激酶(Mitogen-Activated Protein Kinase, MAPK)信号通路的持续活化。[10][3] 大约 50-60% 的病例源于 BRAF 基因 V600E 位点的体细胞点突变。[11] 在 BRAF V600E 阴性的病例中,最常见的突变发生在 MAP2K1 基因(编码 MEK1 蛋白),约占所有病例的 20-25%。[12][23] 其他较少见的 MAPK 通路相关突变包括 ARAF、MAP3K1、NRAS、KRAS 等基因的改变。[24] 近期发现,少数 LCH 病例(特别是婴儿期发病)与 ALK 基因重排有关,形成所谓的 ALK 阳性组织细胞增生症。[25][26]
研究表明,这些驱动突变存在于骨髓中的造血干/祖细胞以及下游的单核细胞和树突状细胞中。[27][28] 这意味着 LCH 是一种起源于骨髓的骨髓增生性肿瘤 (myeloid neoplasm)。[3][10] 突变的祖细胞产生携带突变的单核细胞,这些细胞进入血液循环,迁移到组织中,在局部微环境信号的影响下分化成致病的类兰格汉氏细胞。[29] 这些细胞具有炎症特性,分泌细胞因子和趋化因子,招募其他免疫细胞,形成肉芽肿样病灶,最终导致组织破坏。[30] 在成人中,LCH 有时会与其他骨髓肿瘤(如骨髓增生异常综合征、骨髓增殖性肿瘤)同时发生,提示共同的克隆起源。[31][32]
流行病学
[编辑]LCH 主要影响儿童,发病高峰在 1-4 岁之间。基于人群的研究显示,儿童年发病率约为每百万人 2-9 例。[18][19][20][9] 成人发病率较低,估计每年每百万人约 1-2 例。[21] 男性发病率略高于女性。
临床表现与症状
[编辑]

LCH 的临床表现因受累器官的数量和部位而异,症状多样。
- 骨骼:是最常见的受累部位(约 80% 的儿童病例),通常表现为单个或多个溶骨性病灶,可引起疼痛、肿胀或病理性骨折。颅骨、股骨、肋骨、脊柱和下颌骨是好发部位。[1]
- 皮肤:约 50% 的儿童患者有皮肤受累,表现多样,包括类似脂溢性皮炎的皮疹(尤其在头皮和耳后)、丘疹、结节、点状出血或溃疡。指甲和口腔黏膜也可能受累。[1]
- 淋巴结:淋巴结肿大也较常见。
- 肝脏和脾脏:肝脾肿大提示内脏受累,可能伴有肝功能异常、低蛋白血症、腹水等。肝、脾和骨髓被认为是“风险器官”,这些器官受累预示著较差的预后。[33]
- 骨髓:骨髓受累可导致各种血细胞减少(贫血、白细胞减少、血小板减少)。[33]
- 肺部:肺部 LCH (Pulmonary LCH) 在成人中相对常见,尤其与吸烟密切相关。[13][14][15] 患者可能出现咳嗽、呼吸困难、气胸。影像学上常表现为囊肿和结节。[34]
- 内分泌系统:最常见的内分泌异常是尿崩症 (Diabetes Insipidus),由下丘脑-垂体柄受累引起,导致尿量异常增多和口渴,发生率约 15-25%。[6][35] 其他可能出现的内分泌问题包括生长激素缺乏、性腺功能减退等。
- 中枢神经系统:除了垂体受累,LCH 还可引起中枢神经系统的肿块样病变或神经退行性病变。[7] 神经退行性 LCH 主要影响小脑和基底节,可导致共济失调、构音障碍、认知功能下降等,磁力共振成像 (MRI) 上可见特征性改变。[36][37]
根据受累器官系统的数量和是否有“风险器官”受累,LCH 可分为:
- 单系统疾病:仅累及一个器官系统(如骨骼、皮肤、淋巴结)。可再分为单灶性或多灶性。
- 多系统疾病:累及两个或以上器官系统。可再分为有无风险器官(肝、脾、骨髓)受累。
诊断
[编辑]
- 组织活检:从受累部位(如皮肤、骨骼、淋巴结)获取组织样本。
- 病理学特征:显微镜下可见特征性的兰格汉氏样细胞浸润,这些细胞核呈折叠或沟槽状(咖啡豆样),细胞质嗜酸性。背景常伴有大量嗜酸性细胞、淋巴细胞、巨噬细胞等炎性细胞。
- 免疫组织化学染色:LCH 细胞特征性表达 CD1a 和 CD207 (Langerin)。S100 蛋白通常也呈阳性。CD1a 和 Langerin 的阳性表达是诊断的金标准。[1][2]
- 分子检测:强烈建议对所有 LCH 病例进行 MAPK 通路基因突变检测(尤其是 BRAF V600E 和 MAP2K1),这对于预后判断和指导靶向治疗至关重要。[2] ALK 免疫染色或萤光原位杂交 (Fluorescence in situ hybridization, FISH) 检测也应用于特定病例。[38]
确诊后,需要进行全面的临床评估以确定疾病范围(分期),包括:
- 详细病史和体格检查。
- 全血细胞计数、肝肾功能、凝血功能等实验室检查。
- 骨骼X光片或全身骨扫描。
- 根据临床表现选择性进行胸部电脑断层扫描 (CT)、腹部超声或 CT/磁力共振成像 (MRI)。
- 对于多系统疾病或怀疑有隐匿病灶时,可考虑全身正电子发射断层扫描/电脑断层扫描 (FDG-PET/CT) 扫描。[2]
- 怀疑中枢神经系统受累时进行脑部 MRI,特别是下丘脑-垂体区域。[2][39]
- 对于尿崩症患者,需进行水剥夺试验等内分泌评估。
治疗
[编辑]LCH 的治疗策略取决于疾病的范围(单系统疾病对比多系统疾病)和是否有风险器官受累。[1][2]
儿童治疗
[编辑]- 单系统单灶性疾病:
- 皮肤单灶:通常仅需局部治疗(如外用皮质类固醇)或观察。
- 骨骼单灶:可通过刮除术、病灶内注射皮质类固醇或观察。若病灶位于特殊部位(如脊柱、股骨)或有病理性骨折风险,可能需要更积极的处理,甚至短期化疗。[1]
- 单系统多灶性疾病:
- 多系统疾病:
- 难治性或复发性疾病:二线治疗选择包括克拉屈滨 (Cladribine) 联合阿糖胞苷 (Cytarabine)[41]、氯法拉滨 (Clofarabine)[42] 或靶向治疗(见下文)。
成人治疗
[编辑]成人 LCH 的治疗经验相对较少,许多方案参考自儿童或淋巴瘤治疗。[2][43]
- 单系统疾病:处理原则类似儿童。对于肺部 LCH,戒烟是首要且最重要的措施,部分患者仅戒烟即可缓解。[13][14][15] 若戒烟无效或疾病进展,可考虑克拉屈滨或阿糖胞苷。[2]
- 多系统疾病:可选用化疗方案如克拉屈滨[44][45][46]、阿糖胞苷[47],或联合化疗方案如 CHOP[48] 或 MACOP-B[49]。靶向治疗也是重要选择。
靶向治疗
[编辑]MAPK 通路抑制剂的出现彻底改变了难治性或复发性 LCH 的治疗。[16]
- BRAF 抑制剂:对于携带 BRAF V600E 突变的患者,维罗非尼 (Vemurafenib)[50][51][52][53][54] 和达拉非尼 (Dabrafenib)[55][56] 显示出显著疗效。达拉非尼常与 MEK 抑制剂曲美替尼 (Trametinib) 联合使用。[56]
- MEK 抑制剂:对于携带 MAP2K1 突变的患者,或 BRAF V600E 突变但对 BRAF 抑制剂不耐受/耐药的患者,MEK 抑制剂如曲美替尼 (Trametinib)[57] 和考比替尼 (Cobimetinib)[58][59][60] 是有效的治疗选择。
- ALK 抑制剂:对于存在 ALK 基因重排的 ALK 阳性组织细胞增生症患者,ALK 抑制剂(如克唑替尼 Crizotinib、阿来替尼 Alectinib)显示出良好疗效。[61][62][38]
靶向治疗通常需要持续进行,停药后疾病可能复发。[63]
预后与长期并发症
[编辑]LCH 的预后总体良好,尤其对于单系统疾病患者。儿童单系统疾病的 5 年生存率接近 100%。[9] 多系统疾病,特别是伴有风险器官受累的患者,预后相对较差,但随着治疗方案(包括靶向治疗)的改进,生存率已显著提高。[17]
然而,LCH 患者,即使治愈后,也可能面临长期的后遗症和并发症,发生率可达 50% 或更高。[4][5] 常见的长期并发症包括:
- 骨骼问题:骨骼畸形、病理性骨折后遗症、牙齿脱落。
- 内分泌异常:最常见的是永久性尿崩症,其次是生长激素缺乏导致的身材矮小、性早熟或性腺功能减退。[6]
- 神经系统问题:神经退行性病变可导致进行性共济失调、认知障碍等,严重影响生活质素。[7][36] 学习困难、行为问题也较常见。
*听力障碍:由颞骨受累引起。
- 肺部后遗症:肺部 LCH 患者可能出现慢性呼吸衰竭、肺动脉高压。
- 肝脏后遗症:少数风险器官受累的患者可能发展为胆汁淤积性肝硬化。
- 继发性恶性肿瘤:LCH 患者发生急性淋巴细胞白血病、急性髓系白血病及某些实体瘤的风险增加,可能与疾病本身或治疗相关。[8]
因此,LCH 患者需要长期的多学科随访监测,以及时发现和处理这些晚期效应。
参考资料
[编辑]- ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 Haupt R, Minkov M, Astigarraga I, et al. Langerhans cell histiocytosis (LCH): guidelines for diagnosis, clinical work-up, and treatment for patients till the age of 18 years. Pediatr Blood Cancer. February 2013, 60 (2): 175–84. PMID 23111991. doi:10.1002/pbc.24367.
- ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 Goyal G, Tazi A, Go RS, et al. International expert consensus recommendations for the diagnosis and treatment of Langerhans cell histiocytosis in adults. Blood. April 2022, 139 (17): 2601–21. PMC 11022927
. PMID 35271698. doi:10.1182/blood-2021-12-389606.
- ^ 3.0 3.1 3.2 3.3 3.4 3.5 Rodriguez-Galindo C, Allen CE. Langerhans cell histiocytosis. Blood. April 2020, 135 (16): 1319–1331. PMID 32106306. doi:10.1182/blood.2019000931.
- ^ 4.0 4.1 4.2 Nanduri VR, Pritchard J, Levinsky RJ, Ball S. Long term morbidity following treatment of Langerhans' cell histiocytosis: clinical observations and results from the UK LCH study group. Eur J Pediatr. June 1996, 155 (6): 449–54. PMID 8795497. doi:10.1007/BF01953986.
- ^ 5.0 5.1 5.2 Haupt R, Nanduri V, Calevo MG, et al. Permanent consequences in Langerhans cell histiocytosis patients: a pilot study from the Histiocyte Society-Late Effects Study Group. Pediatr Blood Cancer. May 2004, 42 (5): 419–25. PMID 15054909. doi:10.1002/pbc.10437.
- ^ 6.0 6.1 6.2 Donadieu J, Rolon MA, Thomas C, et al. Endocrine involvement in pediatric-onset Langerhans' cell histiocytosis: a population-based study. J Pediatr. March 2004, 144 (3): 344–50. PMID 15001938. doi:10.1016/j.jpeds.2003.12.023.
- ^ 7.0 7.1 7.2 Grois N, Fahrner B, Arceci RJ, et al. Central nervous system disease in Langerhans cell histiocytosis. J Pediatr. June 2010, 156 (6): 873–81.e1. PMID 20227716. doi:10.1016/j.jpeds.2010.01.036.
- ^ 8.0 8.1 Edgar JD, Haines SA, Donadieu J, et al. Second malignancies in Langerhans cell histiocytosis: a report from the International LCH Study Group. Pediatr Blood Cancer. April 2021, 68 (4): e28813. PMID 33314615. doi:10.1002/pbc.28813.
- ^ 9.0 9.1 9.2 9.3 9.4 Krooks J, Minkov M, Wettergren B, et al. Langerhans cell histiocytosis in children: a population-based study of incidence, clinical features, treatment, and outcome. Pediatr Blood Cancer. March 2018, 65 (3): e26901. PMID 29115726. doi:10.1002/pbc.26901.
- ^ 10.0 10.1 10.2 10.3 10.4 Allen CE, Merad M, McClain KL. Langerhans-Cell Histiocytosis. N Engl J Med. August 2018, 379 (9): 856–68. PMC 6334777
. PMID 30157397. doi:10.1056/NEJMoa1802472.
- ^ 11.0 11.1 Badalian-Very G, Vergilio JA, Degar BA, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. September 2010, 116 (11): 1919–23. PMC 2947417
. PMID 20519626. doi:10.1182/blood-2010-04-277703.
- ^ 12.0 12.1 Chakraborty R, Hampton OA, Shen X, et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood. November 2014, 124 (19): 3007–15. PMC 4224201
. PMID 25202140. doi:10.1182/blood-2014-05-577825.
- ^ 13.0 13.1 13.2 Lorillon G, Tazi A. Adult pulmonary Langerhans cell histiocytosis. Curr Opin Pulm Med. September 2017, 23 (5): 449–56. PMID 28604536. doi:10.1097/MCP.0000000000000404.
- ^ 14.0 14.1 14.2 Vassallo R, Ryu JH. Pulmonary Langerhans' cell histiocytosis. Clin Chest Med. March 2012, 33 (1): 131–46. PMID 22310464. doi:10.1016/j.ccm.2011.11.001.
- ^ 15.0 15.1 15.2 Tazi A. Adult pulmonary Langerhans' cell histiocytosis. Eur Respir J. June 2006, 27 (6): 1272–85. PMID 16738347. doi:10.1183/09031936.06.00024005.
- ^ 16.0 16.1 16.2 Griffin GK, Sholl LM, Lindeman NI, et al. Targeted therapy in histiocytosis: clinical application of molecular data and emerging biomarkers. J Natl Compr Canc Netw. December 2020, 18 (12): 1722–30. PMID 33285511. doi:10.6004/jnccn.2020.7637.
- ^ 17.0 17.1 17.2 17.3 17.4 Gadner H, Minkov M, Grois N, et al. Therapy prolongation improves outcome in multisystem Langerhans cell histiocytosis. Blood. June 2013, 121 (25): 5006–14. PMID 23613528. doi:10.1182/blood-2012-09-455774.
- ^ 18.0 18.1 Salotti JA, Nanduri V, Pearce MS, Parker L, Lynn R, Windebank KP. Incidence and clinical features of Langerhans cell histiocytosis in the UK and Ireland. Arch Dis Child. May 2009, 94 (5): 376–80. PMID 19174413. doi:10.1136/adc.2008.144713.
- ^ 19.0 19.1 Guyot-Goubin A, Donadieu J, Barkaoui M, Bellec S, Thomas C, Clavel J. Descriptive epidemiology of childhood Langerhans cell histiocytosis in France, 2000–2004. Pediatr Blood Cancer. July 2008, 51 (1): 71–75. PMID 18383380. doi:10.1002/pbc.21501.
- ^ 20.0 20.1 Stålemark H, Laurencikas E, Karis J, Gavhed D, Fadeel B, Henter JI. Incidence of Langerhans cell histiocytosis in children: a population-based study. Pediatr Blood Cancer. July 2008, 51 (1): 76–81. PMID 18383381. doi:10.1002/pbc.21502.
- ^ 21.0 21.1 Goyal G, Young JR, Koster MJ, et al. The Mayo Clinic Histiocytosis Working Group consensus statement for the diagnosis and evaluation of adult patients with histiocytic neoplasms: Erdheim-Chester disease, Langerhans cell histiocytosis, and Rosai-Dorfman disease. Mayo Clin Proc. October 2019, 94 (10): 2054–71. PMID 31582245. doi:10.1016/j.mayocp.2019.03.017.
- ^ Emile JF, Abla O, Fraitag S, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. June 2016, 127 (22): 2672–81. PMID 26994086. doi:10.1182/blood-2016-01-690636.
- ^ Brown NA, Furtado LV, Betz BL, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood. September 2014, 124 (10): 1655–58. PMID 25053681. doi:10.1182/blood-2014-05-577312.
- ^ Diamond EL, Durham BH, Haroche J, et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. February 2016, 6 (2): 154–65. PMC 4744516
. PMID 26681714. doi:10.1158/2159-8290.CD-15-0913.
- ^ Go H, Jeon YK, Park S, et al. ALK-positive histiocytosis: a new clinicopathologic spectrum distinct from Langerhans cell histiocytosis. Blood. January 2016, 127 (2): 259–61. PMID 26644138. doi:10.1182/blood-2015-11-681999.
- ^ Chang K, Tay A, Kuick CH, et al. ALK-positive histiocytosis: an expanded clinicopathologic spectrum. Haematologica. February 2019, 104 (2): e100–e103. PMC 6355491
. PMID 30337404. doi:10.3324/haematol.2018.205456. 温哥华格式错误 (帮助)
- ^ Berres ML, Lim K, Peters T, et al. BRAF-V600E expression in precursor cells identifies divergent human LCH teaching programs. Science. September 2014, 345 (6204): 1619–23. PMID 25170053. doi:10.1126/science.1256992. 温哥华格式错误 (帮助)
- ^ Milne P, Bigley V, Bacon CM, et al. Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. Blood. July 2017, 130 (2): 167–75. PMC 5510791
. PMID 28473486. doi:10.1182/blood-2016-12-757795.
- ^ Geissmann F, Lepelletier Y, Fraitag S, et al. Differentiation of Langerhans cells in Langerhans cell histiocytosis. Blood. March 2001, 97 (5): 1241–48. PMID 11222366. doi:10.1182/blood.v97.5.1241.
- ^ Emile JF, Chetritt J, Fraitag S, et al. Langerhans cell histiocytosis cells are activated Langerhans cells. J Pathol. October 1995, 177 (2): 171–76. PMID 8523080. doi:10.1002/path.1711770210.
- ^ Durham BH, Roos-Weil D, Bauman T, et al. Clonal architecture of Langerhans cell histiocytosis and Erdheim-Chester disease. Blood. March 2019, 133 (10): 1127–31. PMC 6405338
. PMID 30602584. doi:10.1182/blood-2018-11-886412.
- ^ Papo M, Diamond EL, Cohen-Aubart F, Emile JF, Roos-Weil D, Gupta N, Durham BH, Ozkaya N, Dogan A, Ulaner GA, Rampal R, Kahn JE, Sené T, Charlotte F, Hervier B, Besnard C, Bernard OA, Settegrana C, Droin N, Hélias-Rodzewicz Z, Amoura Z, Abdel-Wahab O, Haroche J. High prevalence of myeloid neoplasms in adults with non-Langerhans cell histiocytosis. Blood. August 2017, 130 (8): 1007–1013. PMC 5570678
. PMID 28679734. doi:10.1182/blood-2017-03-772190.
- ^ 33.0 33.1 Minkov M. Multisystem Langerhans cell histiocytosis in children: current treatment and future directions. Paediatr Drugs. 2011, 13 (2): 75–86. PMID 21401219. doi:10.2165/11586960-000000000-00000.
- ^ Elia D, Torre O, Cassandro R, et al. Pulmonary Langerhans cell histiocytosis: a comprehensive analysis of 40 patients and literature review. Eur J Intern Med. June 2015, 26 (5): 351–58. PMID 25982979. doi:10.1016/j.ejim.2015.04.011.
- ^ Prosch H, Grois N, Prayer D, et al. Central diabetes insipidus as presenting symptom of Langerhans cell histiocytosis. Pediatr Blood Cancer. November 2004, 43 (5): 594–99. PMID 15390306. doi:10.1002/pbc.20130.
- ^ 36.0 36.1 Grois N, Prayer D, Prosch H, Minkov M, Potschger U, Gadner H. Course and clinical impact of magnetic resonance imaging findings in neurodegenerative Langerhans cell histiocytosis. Pediatr Blood Cancer. December 2009, 53 (7): 1255–60. PMID 19731323. doi:10.1002/pbc.22235.
- ^ Prayer D, Grois N, Prosch H, Gadner H, Barkovich AJ. MR imaging presentation of neurodegenerative Langerhans cell histiocytosis. AJNR Am J Neuroradiol. May 2004, 25 (5): 880–91. PMC 7974775
. PMID 15140738.
- ^ 38.0 38.1 Kemps PG, Picarsic J, Durham BH, et al. ALK-positive histiocytosis: a new clinicopathologic entity with molecular diversity and single-agent ALK inhibitor efficacy. Blood Adv. February 2022, 6 (4): 1157–70. PMC 8866007
. PMID 34710297. doi:10.1182/bloodadvances.2021005538.
- ^ Yeh EA, Greenberg J, Abla O, Longoni G, Diamond E, Hermiston M, Tran B, Rodriguez-Galindo C, Allen CE, McClain K, North American Consortium for H. Evaluation and treatment of Langerhans cell histiocytosis patients with central nervous system abnormalities: Current views and new vistas. Pediatr Blood Cancer. January 2018, 65 (1). PMID 28944988. doi:10.1002/pbc.26784. 温哥华格式错误 (帮助)
- ^ Eckstein O, Pötschger U, Grois N, et al. Vincristine and prednisone for the treatment of Langerhans cell histiocytosis with single-system-multifocal bone disease: a multicenter retrospective analysis. Pediatr Blood Cancer. May 2019, 66 (5): e27643. PMID 30688018. doi:10.1002/pbc.27643.
- ^ Donadieu J, Bernard F, van Noesel M, et al. Cladribine and cytarabine in refractory multisystem Langerhans cell histiocytosis: results of an international phase 2 study. Blood. September 2015, 126 (12): 1415–23. PMID 26188000. doi:10.1182/blood-2015-03-635151.
- ^ Simko SJ, Tran HD, Jones J, et al. Clofarabine salvage therapy in refractory Langerhans cell histiocytosis. Pediatr Blood Cancer. February 2014, 61 (2): 306–17. PMID 24106081. doi:10.1002/pbc.24798.
- ^ Cantu MA, Lupo PJ, Bilgi M, et al. Optimal therapy for adults with Langerhans cell histiocytosis: a systematic review. Cancer. December 2012, 118 (23): 5691–700. PMID 22510827. doi:10.1002/cncr.27623.
- ^ Saven A, Burian C. Cladribine activity in adult Langerhans-cell histiocytosis. Blood. June 1999, 93 (12): 4125–30. PMID 10361113.
- ^ Pardanani A, Phyliky RL, Li CY, Tefferi A. 2-Chlorodeoxyadenosine therapy for disseminated Langerhans cell histiocytosis. Mayo Clin Proc. March 2003, 78 (3): 301–06. PMID 12630580. doi:10.4065/78.3.301.
- ^ Adam Z, Szturz P, Vaníček J, et al. Cladribine (2-chlorodeoxyadenosine) in the treatment of 33 patients with Langerhans cell histiocytosis. Vnitr Lek. Fall 2017, 63 (11): 844–52. PMID 29228807.
- ^ Adam Z, Szturz P, Pour L, Krejčí M, Koukalová R, Řehák Z, et al. [Cytarabine treatment for Langerhans cell histiocytosis in 21 adult patients in the Czech Republic]. Klin Onkol. 2015, 28 (5): 348–54. PMID 26479433. doi:10.14735/amko2015348 (Czech).
- ^ Maia RC, de Rezende LM, Robaina M, et al. CHOP chemotherapy for adult Langerhans cell histiocytosis: a case report and review of the literature. Hematol Oncol Stem Cell Ther. December 2010, 3 (4): 190–94. PMID 21220225. doi:10.1016/s1658-3876(10)50030-x.
- ^ Derenzini E, Fina MP, Stefoni V, et al. MACOP-B regimen in the treatment of adult Langerhans cell histiocytosis: experience on seven patients. Ann Oncol. June 2010, 21 (6): 1173–78. PMID 19910353. doi:10.1093/annonc/mdp508.
- ^ Haroche J, Cohen-Aubart F, Emile JF, et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood. June 2012, 119 (24): 5691–93. PMID 22563090. doi:10.1182/blood-2012-03-419531.
- ^ Diamond EL, Subbiah V, Lockhart AC, et al. Vemurafenib for BRAF V600-mutant Erdheim-Chester disease and Langerhans cell histiocytosis analysis of data from the histology-independent VE-BASKET study. JAMA Oncol. March 2018, 4 (3): 384–88. PMC 5885849
. PMID 29222555. doi:10.1001/jamaoncol.2017.5029.
- ^ Héritier S, Hélias-Rodzewicz Z, Lapillonne H, et al. Vemurafenib use in children with refractory BRAFV600E-positive Langerhans cell histiocytosis: the French nationwide experience. Blood Adv. May 2021, 5 (10): 2171–75. PMC 8155775
. PMID 33974066. doi:10.1182/bloodadvances.2020003915.
- ^ Donadieu J, Larabi IA, Tardieu M, et al. Vemurafenib for refractory multisystem Langerhans cell histiocytosis in children: an international observational study. J Clin Oncol. November 2019, 37 (31): 2857–65. PMID 31509521. doi:10.1200/JCO.19.00451.
- ^ Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. August 2015, 373 (8): 726–36. PMC 4971773
. PMID 26287849. doi:10.1056/NEJMoa1502309.
- ^ Suh MR, Lee J, Lee J, et al. Dabrafenib and trametinib in pediatric patients with BRAF V600-mutant high-grade glioma. Clin Cancer Res. April 2022, 28 (7): 1394–401. PMID 35086871. doi:10.1158/1078-0432.CCR-21-3479.
- ^ 56.0 56.1 Cohen Aubart F, Charlotte F, Mir O, et al. Sustained response to the combination of dabrafenib and trametinib in BRAF V600E-mutated adult Langerhans cell histiocytosis. Haematologica. September 2018, 103 (9): e424–e426. PMC 6119159
. PMID 29773581. doi:10.3324/haematol.2018.191417.
- ^ Diamond EL, Durham BH, Ulaner GA, et al. Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature. March 2019, 567 (7749): 521–24. PMC 6438706
. PMID 30867592. doi:10.1038/s41586-019-1012-y.
- ^ Cohen-Aubart F, Emile JF, Maksud P, et al. Efficacy and safety of MEK inhibition in Langerhans cell histiocytosis and Erdheim-Chester disease. Blood. October 2021, 138 (17): 1515–19. PMID 34293062. doi:10.1182/blood.2021011747.
- ^ Bouayed S, Delord M, Heiblig M, et al. Cobimetinib effectiveness and tolerance in eight refractory BRAF V600E-mutated Langerhans cell histiocytosis patients. Br J Haematol. June 2021, 193 (4): 824–28. PMID 33882146. doi:10.1111/bjh.17474.
- ^ Heiblig M, Bouayed S, Maucort-Boulch D, et al. Efficacy and safety of MEK inhibitors in adult Langerhans cell histiocytosis. Blood Adv. January 2022, 6 (1): 129–33. PMC 8753210
. PMID 34710299. doi:10.1182/bloodadvances.2021005611.
- ^ Shanmugam V, Griffin GK, Jacobsen ED, et al. Durable responses in patients with histiocytoses harboring activating ALK alterations. Blood Adv. August 2021, 5 (16): 3249–53. PMC 8387004
. PMID 34410300. doi:10.1182/bloodadvances.2021004841.
- ^ Rossi S, Gasparini P, Cascione L, et al. ALK-rearranged histiocytosis: report of two cases responding to ALK inhibitors. J Natl Cancer Inst. October 2019, 111 (10): 1097–100. PMID 30689840. doi:10.1093/jnci/djy233.
- ^ Cohen Aubart F, Emile JF, Carrat F, et al. Targeted therapies in 54 patients with Erdheim-Chester disease, including follow-up after interruption (the TAILORED study). Blood. September 2017, 130 (11): 1377–80. PMID 28705886. doi:10.1182/blood-2017-03-775979.
外部链接
[编辑]