阿耳芬面
阿耳芬面是恒星星冕与星风之间的边界,定义为星冕等离子的阿耳芬速度和大尺度星风速相等的地方。它以汉尼斯·阿耳芬命名,也被称为“阿耳芬临界面”、“阿耳芬点”或“阿耳芬半径”。2018年,派克太阳探测器成为第一艘穿越太阳阿耳芬面的太空船。
定义
[编辑]


恒星没有固体表面。然而,它们有一个过热的大气层,由通过重力和磁力结合的物质形成[5]。星冕它延伸到恒星(太阳)表面或光球层之外,被认为是恒星的外边界。它标志着向星风(太阳风)的过渡,星风穿过行星系统。这个极限(边界)是由星风中的扰动不能传播回恒星表面的距离来定义的。如果向外的星风速度超过1马赫,即太阳风定义的“音速”,这些扰动就不能向恒星传播回来。这个距离在恒星周围形成了一个不规则的“面”,称为阿耳芬面[6]。它也可以被描述为重力和磁场太弱而无法约束将物质推离恒星的热量和压力的点。这是恒星大气结束和星风开始的地方[5]。
Adhikari、Zank、和Zhao(2019)将阿耳芬面定义为[7]:
DeForest、Howard、和McComas (2014)定义阿耳芬面为[8]:
一个自然边界,标志着单个等离子包和磁通量与太阳本身的因果断开。阿耳尔芬面是加速太阳风的径向运动通过径向阿耳芬速度的轨迹,因此任何物质的位移都不能将资讯带回日冕。因此,它是日冕的自然外边界,也是行星际空间的内边界。
阿耳芬面将星风的次阿耳芬面和超阿耳芬面分开,星风会影响系统中行星轨道周围任何磁层/电离层的结构[2]。阿耳芬面的特征可以作为恒星适居带的内边界[3]。阿耳芬面“名义上”可以在10-30个恒星半径处找到[9]。
研究
[编辑]研究人员不确定太阳阿耳芬临界面的确切位置。根据日冕的远程影像,估计它距离太阳表面10到20个太阳半径[5]。2021年4月28日,在第八次飞越太阳时,美国国家航空航天局的派克太阳探测器(PSP)在18.8个太阳半径处遇到了特定的磁性和粒子条件,表明它穿透了阿耳芬面[5][1];探测器用其FIELDS和SWEAP仪器量测了太阳风等离子环境[6]。美国国家航空暨太空署将这一事件描述为“触及太阳”[5]。在飞越过程中,派克太阳探测器多次进出日冕。这证明了阿耳芬临界面形状不像光滑的球,而是有尖刺和谷,使其表面起皱的预测[5]。
2021年4月28日世界时09:33,派克太阳探测器进入光球层上方13 × 106千米(8.1 × 106英里)的太阳磁化大气层,在阿耳芬临界面下方穿越五小时,进入等离子,与太阳发生因果接触,阿耳芬马赫数为0.79,磁压主导离子和电子压力。磁测图表明,该区域是在伪流光 (英语:pseudostreamer)上方快速膨胀的日冕磁场线上出现的稳定流。该流的“次阿耳芬”性质可能是由于伪流光底部的磁重联受到抑制,该区域的异常低密度和磁测图证明了这一点[10]。
进阶读物
[编辑]- Kasper, Justin C.; Klein, Kristopher G. Strong Preferential Ion Heating is Limited to within the Solar Alfvén Surface. The Astrophysical Journal Letters. 1 June 2019, 877 (2): L35. Bibcode:2019ApJ...877L..35K. S2CID 174801124. arXiv:1906.02763
. doi:10.3847/2041-8213/ab1de5
.
- Guilet, Jerome; Foglizzo, Thierry; Fromang, Sebastien. Dynamics of an Alfven surface in core collapse supernovae. The Astrophysical Journal. 2010, 729 (1): 71. S2CID 118461285. arXiv:1006.4697
. doi:10.1088/0004-637X/729/1/71.
- Fionnagáin, D ó; Vidotto, A A; Petit, P; Folsom, C P; Jeffers, S V; Marsden, S C; Morin, J; do Nascimento, J-D. The Solar Wind in Time II: 3D stellar wind structure and radio emission. Monthly Notices of the Royal Astronomical Society. 22 November 2018 [18 May 2023]. arXiv:1811.05356
. doi:10.1093/mnras/sty3132
.
- Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer. The dependence of stellar mass and angular momentum losses on latitude and on active region and dipolar magnetic fields. The Astrophysical Journal. 27 October 2015, 813 (1): 40. S2CID 118740200. arXiv:1509.08936
. doi:10.1088/0004-637X/813/1/40.
- Vidotto, A. A.; Jardine, M.; Morin, J.; Donati, J. F.; Opher, M.; Gombosi, T. I. M-dwarf stellar winds: the effects of realistic magnetic geometry on rotational evolution and planets. Monthly Notices of the Royal Astronomical Society. 21 February 2014, 438 (2): 1162–1175 [18 May 2023]. arXiv:1311.5063
. doi:10.1093/mnras/stt2265
.
- Vidotto, Aline A. The evolution of the solar wind. Living Reviews in Solar Physics. 26 April 2021, 18 (1): 3. ISSN 1614-4961. PMC 8550356
. PMID 34722865. doi:10.1007/s41116-021-00029-w (英语).
参考资料
[编辑]- ^ 1.0 1.1 GMS: Animation: NASA's Parker Solar Probe Enters Solar Atmosphere. svs.gsfc.nasa.gov. 14 December 2021 [30 July 2022]. (原始内容存档于4 October 2022) (英语).
- ^ 2.0 2.1 Alvarado-Gómez, Julián D.; Cohen, Ofer; Drake, Jeremy J.; Fraschetti, Federico; Poppenhaeger, Katja; Garraffo, Cecilia; Chebly, Judy; Ilin, Ekaterina; Harbach, Laura; Kochukhov, Oleg. Simulating the Space Weather in the AU Mic System: Stellar Winds and Extreme Coronal Mass Ejections. The Astrophysical Journal. 1 April 2022, 928 (2): 147. ISSN 0004-637X. arXiv:2202.07949
. doi:10.3847/1538-4357/ac54b8
.
Material was copied from this source, which is available under a Creative Commons Attribution 4.0 互联网档案馆的存档,存档日期2017-10-16.
- ^ 3.0 3.1 Chebly, Judy J.; Alvarado-Gómez, Julián D.; Poppenhaeger, Katja. Destination exoplanet: Habitability conditions influenced by stellar winds properties. Astronomische Nachrichten. May 2022, 343 (4) [18 May 2023]. ISSN 0004-6337. S2CID 238922661. arXiv:2111.09707
. doi:10.1002/asna.20210093. (原始内容存档于18 May 2023) (英语).
Material was copied from this source, which is available under a Creative Commons Attribution 4.0 互联网档案馆的存档,存档日期2017-10-16.
- ^ Alvarado-Gómez, Julián D.; Drake, Jeremy J.; Garraffo, Cecilia; Cohen, Ofer; Poppenhaeger, Katja; Yadav, Rakesh K.; Moschou, Sofia P. An Earth-like Stellar Wind Environment for Proxima Centauri c. The Astrophysical Journal Letters. 1 October 2020, 902 (1): L9. ISSN 2041-8205. arXiv:2009.07266
. doi:10.3847/2041-8213/abb885
.
- ^ 5.0 5.1 5.2 5.3 5.4 5.5
前文有一个或多个句子包含现时处于公有领域的内容:Hatfield, Miles. NASA Enters the Solar Atmosphere for the First Time. NASA. 13 December 2021 [30 July 2022]. (原始内容存档于15 December 2021).
- ^ 6.0 6.1
前文有一个或多个句子包含现时处于公有领域的内容:SVS: Parker Solar Probe: Crossing the Alfven Surface. svs.gsfc.nasa.gov. 14 December 2021 [30 July 2022]. (原始内容存档于8 August 2022) (英语).
- ^ Adhikari, L.; Zank, G. P.; Zhao, L.-L. Does Turbulence Turn off at the Alfvén Critical Surface?. The Astrophysical Journal. 30 April 2019, 876 (1): 26. Bibcode:2019ApJ...876...26A. S2CID 156048833. doi:10.3847/1538-4357/ab141c
.
- ^ DeForest, C. E.; Howard, T. A.; McComas, D. J. Inbound waves in the solar corona: a direct indicator of Alfvén Surface location. The Astrophysical Journal. 12 May 2014, 787 (2): 124. Bibcode:2014ApJ...787..124D. S2CID 118371646. arXiv:1404.3235
. doi:10.1088/0004-637X/787/2/124.
- ^ Goelzer, Molly L.; Schwadron, Nathan A.; Smith, Charles W. An analysis of Alfvén radius based on sunspot number from 1749 to today. Journal of Geophysical Research: Space Physics. January 2014, 119 (1): 115–120. doi:10.1002/2013JA019420
(英语).
- ^ Kasper, J. C.; Klein, K. G.; Lichko, E.; Huang, Jia; Chen, C. H. K.; Badman, S. T.; Bonnell, J.; Whittlesey, P. L.; Livi, R.; Larson, D.; Pulupa, M.; Rahmati, A.; Stansby, D.; Korreck, K. E.; Stevens, M.; Case, A. W.; Bale, S. D.; Maksimovic, M.; Moncuquet, M.; Goetz, K.; Halekas, J. S.; Malaspina, D.; Raouafi, Nour E.; Szabo, A.; MacDowall, R.; Velli, Marco; Dudok De Wit, Thierry; Zank, G. P. Parker Solar Probe Enters the Magnetically Dominated Solar Corona. Physical Review Letters. 14 December 2021, 127 (25): 255101. PMID 35029449. doi:10.1103/PhysRevLett.127.255101
.
Material was copied from this source, which is available under a Creative Commons Attribution 4.0 互联网档案馆的存档,存档日期2017-10-16.
外部链接
[编辑]- Solving the sun's super-heating mystery with Parker Solar Probe. University of Michigan News. 4 June 2019 [30 July 2022].