硫酚盐
外观
硫酚盐是硫酚失去巯基的氢后和金属离子、金属簇或非金属离子形成的盐。当芳环上连接多个巯基时,它们脱质子后可以与金属形成配位聚合物或金属有机框架材料。
苯六硫酚因可以形成多种具有高导电性的材料(如[Cu6(C6S6)]n等)而倍受研究者关注。[1]
合成及反应
[编辑]由于硫酚具有较强的酸性,它的盐可由相应的碱在乙醇甚至水中反应得到:[2][3]
二价铜(以及三价金、四价铂等)可以将硫酚氧化为二芳基二硫化物,并形成CuISAr,若要制得纯净的硫酚亚铜,需要用合适的溶剂将二硫化物洗去。[4]
在钯配合物催化下,硫酚盐(如硫酚钠)可以和卤代烃反应,生成相应的芳基硫醚。[5]
硫酚盐列表
[编辑]已被报道的硫酚盐参见下表:
化合物 | 化学式 | 外观 | 熔点(°C) | 空间群 | 注释 | 参考文献 |
---|---|---|---|---|---|---|
苯硫酚亚铜 | CuSC6H5 | 黄绿色 | 252-254 (dec) | [a] | ||
苯硫酚银 | AgSC6H5 | 黄色 | 312-315 | [a] | ||
4-氟苯硫酚银 | [AgSC6H4F]n | 白色 | P21/n | 无光致发光现象 | [6] | |
4-氯苯硫酚银 | [AgSC6H4Cl]n | 白色 | Iba2 | 无光致发光现象 | [6] | |
苯硫酚亚金 | AuSC6H5 | 浅黄色 | 198-203 (dec) | [a] | ||
二苯硫基金(I)酸四丁基铵 | [(C4H9)4N][Au(SC6H5)2] | 无色 | 66.5-67.5 | λem(max)=501 nm(λex=350 nm) | [7] | |
二十(4-叔丁基苯硫基)二十八金 | Au28(tC4H9C6H4S)20 | 棕色 | P1 | [8] | ||
二十八(4-叔丁基苯硫基)四十四金 | Au44(tC4H9C6H4S)28 | 黑色 | C2/c | [9] | ||
五十二(4-叔丁基苯硫基)一百三十三金 | Au133(tC4H9C6H4S)52 | 暗紫色针状 | P1(170 K) | [10] | ||
苯硫酚三(4-三氟甲基苯基)膦亚金 | (F3CC6H4)3PAuSC6H5 | 黄色针状 | P1 | [11] | ||
4-吡啶硫基(三苯基膦)金(I)二聚体 | [(C5H4NS)Au(P(C6H5)3)]2 | 浅黄色 | P1 | [11] | ||
苯硫酚亚铊 | TlSC6H5 | 浅黄色 | 255-260 (dec) | [a] | ||
苯硫酚锌 | Zn(SC6H5)2 | 白色 | 222-227 | [a] | ||
苯硫酚镉 | Cd(SC6H5)2 | 白色 | 320-325 | P212121 | [a][12] | |
4-甲基苯硫酚镉 | Cd(SC6H4CH3)2 | 285 (dec) | P21/c | [12] | ||
苯硫酚汞 | Hg(SC6H5)2 | 白色 | 150-154 | [a] | ||
4-叔丁基苯硫酚汞 | Hg(SC6H4tC4H9)2 | 白色 | P1 | [13] | ||
苯硫酚锡 | Sn(SC6H5)2 | 浅黄色 | 153-154 (dec) | [a] | ||
苯硫酚铅 | Pb(SC6H5)2 | 黄色 | 190-195 | [a] | ||
苯硫酚铁(III) | Fe(SC6H5)3 | 深棕色 | [14] | |||
苯硫酚钴 | Co(SC6H5)2 | 棕绿色 | 290-295 | [a] | ||
苯硫酚镍 | Ni(SC6H5)2 | 红棕色 | 310-315 (dec) | [a] | ||
苯硫酚钯 | Pd(SC6H5)2 | 红棕色 | 320 | [a] | ||
苯硫酚亚铂 | Pt(SC6H5)2 | 亮黄色 | 320 | [a] | ||
苯硫酚钼(III) | [Mo(SC6H5)3]n | 深红色 | Pnmn | [14] | ||
苯硫酚钌(III) | [Ru(SC6H5)3]n | 暗绿色 | Pnmn | [14] | ||
苯硫酚钨(III) | [W(SC6H5)3]n | 棕黑色 | Pnmn | [14] | ||
苯硫酚铋 | Bi(SC6H5)3 | 橙色 | 95-97 (dec) | [a] |
注释:[a] 文献[4]
参考文献
[编辑]- ^ Xiangzhi Meng; et al. Tunable Thiolate Coordination Networks on Metal Surfaces. ChemNanoMat, 2020. 6 (10): 1479-1484. doi:10.1002/cnma.202000267.
- ^ Dillon M. Love; et al. Amine Induced Retardation of the Radical-Mediated Thiol–Ene Reaction via the Formation of Metastable Disulfide Radical Anions. J. Org. Chem. 2018, 83, 5, 2912–2919. doi:10.1021/acs.joc.8b00143.
- ^ Pooja Dubey; et al. Sonogashira Coupling (Cu/Amine-Free) of ArBr/Cl in Aerobic Condition and N-Benzylation of Aniline with Benzyl Alcohol Catalyzed by Complexes of Pd(II) with Sulfated/Selenated NHCs. ChemistrySelect (2020), 5(10), 2925-2934. doi:10.1002/slct.201904819.
- ^ 4.0 4.1 Michael E. Peach. Preparation and thermal decomposition of some metal thiophenolates. J. Inorg. Nucl. Chem, 1979. 41 (9), 1390–1392. doi:10.1016/0022-1902(79)80062-7.
- ^ Thomas Scattolin; et al. Site-Selective C−S Bond Formation at C−Br over C−OTf and C−Cl Enabled by an Air-Stable, Easily Recoverable, and Recyclable Palladium(I) Catalyst. Angew Chem Int Ed. 2018. 57 (38). 12425-12429. doi:10.1002/anie.201806036.
- ^ 6.0 6.1 Saly Hawila; et al. Tuning the 1D–2D dimensionality upon ligand exchange in silver thiolate coordination polymers with photoemission switching. J. Mater. Chem. B, 2023,11, 3979-3984. doi:10.1039/D3TB00537B. ... the lamellar 1 and 2, which are non-luminescent
- ^ Seiji Watase; et al. Solid-state luminescence and crystal structures of novel gold(I) benzenethiolate complexes. J. Chem. Soc., Dalton Trans., 2000, 3585-3590. doi:10.1039/B006572M.
- ^ Chenjie Zeng; et al. Chiral Structure of Thiolate-Protected 28-Gold-Atom Nanocluster Determined by X-ray Crystallography. J. Am. Chem. Soc. 2013, 135, 27, 10011–10013. doi:10.1021/ja404058q.
- ^ Chenjie Zeng; et al. Gold Quantum Boxes: On the Periodicities and the Quantum Confinement in the Au28, Au36, Au44, and Au52 Magic Series. J. Am. Chem. Soc. 2016, 138, 12, 3950–3953. doi:10.1021/jacs.5b12747.
- ^ Chenjie Zeng; et al. Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle. Sci. Adv, 2015. 1 (2). doi:10.1126/sciadv.1500045.
- ^ 11.0 11.1 Keiko Nunokawa; et al. Substituent effects on aurophilicity and π–π interaction in crystals of arylphosphine–Au(I) derivatives. Synthesis and X-ray structural studies of compounds (CX3C6H4)3P-Au-X and {(CF3)2C6H3}3P-Au-X. Inorganic Chimica Acta, 2001. 322 (1-2). 56-64. doi:10.1016/S0020-1693(01)00543-6.
- ^ 12.0 12.1 Ian G. Dance; et al. The different nonmolecular polyadamantanoid crystal structures of cadmium benzenethiolate and 4-methylbenzenethiolate. Analogies with microporous aluminosilicate frameworks. Inorg. Chem. 1987, 26, 24, 4057–4064. doi:10.1021/ic00271a019.
- ^ Jonathan G. Melnick; et al. Synthesis, Structure, and Reactivity of Two-Coordinate Mercury Alkyl Compounds with Sulfur Ligands: Relevance to Mercury Detoxification. Inorg. Chem. 2009, 48, 14, 6763–6772. doi:10.1021/ic900721g.
- ^ 14.0 14.1 14.2 14.3 Ulrich Berger; Joachim Strähle. Polymere Thiolatokomplexe [M(SPh)3]∞ der Metalle Molybdän, Wolfram, Eisen und Ruthenium mit linearen Metallketten. Synthese und Struktur von (OC)3Fe(SPh)3Fe(SPh)3Fe(CO)3·2(CH3)2CO. Zeitschrift fur Anorganische und Allgemeine Chemie, 1984, 516, 19, doi:10.1002/zaac.19845160904.