多烯甲萘醌
多烯甲萘醌(menaquinone, MK),又稱維他命K2,為一群相似的化合物。
- 在人類飲食中最常見的是短鏈的四烯甲萘醌(MK-4)。MK-4基本不經口吸收,[1]在動物體內的存在主要是經由葉綠醌(K1)經由甲萘醌(K3)轉化而成。轉化過程無需細菌參與。[2]日本有採用口服四烯甲萘醌輔助治療絕經後骨質疏鬆,起效劑量是維生素K膳食推薦量(Daily Value)的五百倍,足見其口服吸收之差。[3]
- 在人類身上口服有效的是長鏈多烯甲萘醌(如七烯甲萘醌MK-7、八烯甲萘醌MK-8、九烯甲萘醌MK-9),[1]一般存在於納豆、清麴醬這種細菌發酵的食物中。[4]
- 此外還有超長鏈的MK-10到MK-13,會由大腸內細菌在厭氧環境中製造。但是被人體吸收的很少。[5]
維生素K2未有已知的毒性,因維生素K不會在肝臟中過量殘留。
構造
[編輯]
維生素K皆有醌結構,而維生素K2的命名取決於上圖化學式中n的數目。例如當n為4,名稱就是MK-4。維生素K2於身體中的傳輸會受其結構影響。


作用機制
[編輯]維生素K2的作用機制與維生素K1類似,能夠輔助γ-穀氨酰羧化酶將穀氨酸(Glu)轉化成γ-羧化穀氨酸(Gla)。這過程對生成Gla-蛋白質(含有Gla的蛋白質)有幫助,例子如下:
- 骨鈣素:骨骼礦化
- GAS6:細胞增殖
- 凝血酶、抗凝蛋白:血液穩態
吸收
[編輯]維生素K於小腸中被吸收,藉乳糜微粒運輸。維生素K1和MK-4能夠被肝臟快速處理,但低密度脂蛋白(LDL)會帶走較多長鏈多烯甲萘醌。由於LDL壽命較長,長鏈多烯甲萘醌能夠被肝以外的組織(骨、軟骨、血管等)吸收,對達致維生素K部分功效有幫助。[6]
攝入
[編輯]除了肝臟外,蘊含長鏈多烯甲萘醌最豐富的是以細菌發酵的食品,如乳酪(MK-8、MK-9)、納豆(MK-7)等,當中納豆為維生素K2含量最豐富的食品[7]。根據對荷蘭人飲食習慣的研究,估計維生素K的攝取由約 90% 維生素K1、約 7.5 % MK-5至MK-9及約 2.5% MK-4組成。另外根據對完全不飽和多烯甲萘醌的研究,乳酪含有10–20 μg/100g 的MK-8和35–55 μg/100 g 的MK-9。[8]在中國的孕婦中,維生素K1攝入量占總維生素K攝入量的79.4%,維生素K2中的MK-4則占11.8%,MK-7則占8.8%。[9]
另外人體腸道中的細菌亦可製造維生素K2,可以滿足每日對維生素K的部分需求。
健康影響
[編輯]關於維生素K2的一個研究重點是增加骨密度與預防骨質疏鬆的潛力。一項元分析顯示,在排除一項異質性研究後,無論是與安慰劑還是與不含維生素K2的配方相比,均能有效降低骨折發生率與腰椎骨密度。[10]此外,一項分析也顯示,補充維生素K2有着延緩血管和瓣膜鈣化進展的潛力。[11]
在一項臨床試驗中,每天口服180μgMK-7型維生素K2者相較於安慰劑可顯著降低夜間腿抽筋幾率與持續時間。[12]
抗凝劑及維生素K的補充
[編輯]研究指出長期口服抗凝劑減少體內正常骨鈣素,從而影響骨骼健康。這可能導致骨骼礦化不足(骨質減少)、容易骨折等[13]。另外長期口服抗凝劑亦相信會令小童、成人出現不良的軟組織鈣化[14][15],這是由於缺乏維生素K導致正常基質Gla蛋白偏少。在動物實驗中血管鈣化可出現於服用華法林兩週內[16]。另外長期口服抗凝劑的病人被發現其動脈鈣化的程度為其他病人的一倍[17][18]。動脈鈣化亦可能導致收縮期高血壓、心室肥大等[19][20]。雖然大量維生素K降低抗凝劑的效用,但現在正研究將抗凝劑療程及維生素K結合。
參考文獻
[編輯]- ^ 1.0 1.1 Sato T, Schurgers LJ, Uenishi K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutrition Journal. November 2012, 11 (93): 93. PMC 3502319
. PMID 23140417. doi:10.1186/1475-2891-11-93
.
- ^ Shearer, Martin J.; Newman, Paul. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. Journal of Lipid Research. March 2014, 55 (3): 345–362. ISSN 0022-2275. PMC 3934721
. PMID 24489112. doi:10.1194/jlr.R045559
.
- ^ Iwamoto J. Vitamin K2 therapy for postmenopausal osteoporosis. Nutrients. May 2014, 6 (5): 1971–80. PMC 4042573
. PMID 24841104. doi:10.3390/nu6051971
.
administered daily doses of 15, 45, 90, and 135 mg revealed that 45 mg was the minimum effective dose for improving bone mass parameters evaluated by microdensitometry and/or single photon absorptiometry in postmenopausal women with osteoporosis
- ^ Kang, Min-Ji; Baek, Kwang-Rim; Lee, Ye-Rim; Kim, Geun-Hyung; Seo, Seung-Oh. Production of Vitamin K by Wild-Type and Engineered Microorganisms. Microorganisms. 2022-03-03, 10 (3): 554. ISSN 2076-2607. PMC 8954062
. PMID 35336129. doi:10.3390/microorganisms10030554
(英語).
- ^ Myneni VD, Mezey E. Regulation of bone remodeling by vitamin K2. Oral Diseases. November 2017, 23 (8): 1021–1028. PMC 5471136
. PMID 27976475. doi:10.1111/odi.12624.
- ^ Martin J. Shearer, Paul Newman. Metabolism and cell biology of vitamin K. Thromb Haemost 2008
- ^ Kaneki M, Hodges SJ, Hosoi T, Fujiwara S, Lyons A, Crean SJ, Ishida N, Nakagawa M, Takechi M, Sano Y, Mizuno Y, Hoshino S, Miyao M, Inoue S, Horiki K, Shiraki M, Ouchi Y, Orimo H; Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of K vitamins2: possible implications for hip-fracture risk; Nutrition; 2001; 17(4): 315-321.
- ^ Shearer N, Metabolism and cell biology of vitamin K. Thromb Haemost. 2008
- ^ 張嬈. 孕妇维生素K营养状况调查及其与妊娠并发症和新生儿结局的关联分析. 青島大學學位論文. 2023. doi:10.27262/d.cnki.gqdau.2023.002390.
- ^ Ma, ML; Ma, ZJ; He, YL; Sun, H; Yang, B; Ruan, BJ; Zhan, WD; Li, SX; Dong, H; Wang, YX. Efficacy of vitamin K2 in the prevention and treatment of postmenopausal osteoporosis: A systematic review and meta-analysis of randomized controlled trials.. Frontiers in public health. 2022, 10: 979649. PMC 9403798
. PMID 36033779. doi:10.3389/fpubh.2022.979649.
- ^ Hariri, E; Kassis, N; Iskandar, JP; Schurgers, LJ; Saad, A; Abdelfattah, O; Bansal, A; Isogai, T; Harb, SC; Kapadia, S. Vitamin K(2)-a neglected player in cardiovascular health: a narrative review.. Open heart. 2021-11, 8 (2). PMC 8596038
. PMID 34785587. doi:10.1136/openhrt-2021-001715.
- ^ Tan, J; Zhu, R; Li, Y; Wang, L; Liao, S; Cheng, L; Mao, L; Jing, D. Vitamin K2 in Managing Nocturnal Leg Cramps: A Randomized Clinical Trial.. JAMA internal medicine. 2024-12-01, 184 (12): 1443–1447. PMC 11581596
. PMID 39466236. doi:10.1001/jamainternmed.2024.5726.
- ^ Caraballo PJ, Gabriel SE, Castro MR, Atkinson EJ, Melton LJ 3rd. Changes in bone density after exposure to oral anticoagulants: a meta-analysis.Osteoporos Int. 1999;9(5):441-8.
- ^ Barnes C, Newall F, Ignjatovic V, Wong P, Cameron F, Jones G, Monagle P. Reduced bone density in children on long-term warfarin. Pediatr Res. 2005;57(4):578-81.
- ^ Hawkins D, Evans J. Minimising the risk of heparin-induced osteoporosis during pregnancy. Expert Opin Drug Saf. 2005;4(3):583-90
- ^ Price PA, Faus SA, Williamson MK. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol. 1998;18(9):1400-7.
- ^ Schurgers LJ, Aebert H, Vermeer C, Bültmann B, Janzen J. Oral anticoagulant treatment: friend or foe in cardiovascular disease? Blood. 2004 15;104(10):3231-2.
- ^ Koos R, Mahnken AH, Mühlenbruch G, Brandenburg V, Pflueger B, Wildberger JE, Kühl HP. Relation of oral anticoagulation to cardiac valvular and coronary calcium assessed by multislice spiral computed tomography. Am J Cardiol. 2005;96(6):747-9.
- ^ Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932-43.
- ^ Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43(9):1663-9.