用户:ItMarki/五角锥

![]() | ||
类别 | 锥体 约翰逊多面体 J1 – J2 – J3 | |
---|---|---|
对偶多面体 | 自身对偶 | |
性质 | ||
面 | 6 | |
边 | 10 | |
顶点 | 6 | |
欧拉特征数 | F=6, E=10, V=6 (χ=2) | |
二面角 | 约翰逊多面体:
| |
组成与布局 | ||
面的种类 | 5个三角形 1个五边形 | |
顶点布局 | [1] | |
对称性 | ||
对称群 | ||
特性 | ||
凸 | ||
图像 | ||
|
在几何学中,五角锥是以五边形为底面的锥体,含有5个三角形面,一共6个面。每一边皆等长的五角锥属于约翰逊多面体,由等边三角形和正五边形组成。
五角锥是诸多多面的组成部分,也出现于自然科学中,比如在立体化学中,部分分子的结构为五角锥形分子构型。
性质
[编辑]五角锥具有6个顶点、10个边和6个面。其中一面是五边形,称为锥体的底面,而其余5个面是三角形。[2]五角锥的底面由5个边连接5个顶点而成,而剩下5个边称为侧棱,交于第6个顶点。[3]底面为正五边形的五角锥称为正五角锥;高垂直于底面的中心的五角锥称为直五角锥。[4]
五角锥与其他以正多边形为底面的直锥体一样,具有锥体对称,循环群为:锥体绕旋转轴(连接底面中心和底面对着的顶点的线)旋转1/5、2/5、3/5、4/5后不变。它也与任何经过底面平分线的垂直平面镜像对称。[1]五角锥的轮图表示式为,代表其骨架由五边形的5个顶点与中心的顶点(完全点)连接而成。[5]它是自身对偶的,即它的对偶多面体正是自己。[6]

如果五角锥的每个边等长,则它的面为等边三角形和正五边形。因为锥体依然为凸多面体,而所有面都是正多边形,所以它归类为第二个约翰逊多面体。[7]两个相邻三角面的二面角约为138.19°,而三角面与底面的二面角约为37.37°。[1]它是基本多面体,即不能被平面分割成两个正多边形面的凸多面体。[8]多面体的表面积等于其面的面积总和,所以五角锥的表面积等于5个三角形面和1个五边形底面的面积总和。锥体的体积等于底面积乘以高的三分之一。[9]假设约翰逊多面体五角锥的边长为,则其表面积和体积等于:[10]
而如果正五角锥的底面积为,高为,则其表面积和体积等于:[11]
应用
[编辑]
五角锥是许多多面体的组成部分。五角锥的底面可以叠于各种约翰逊多面体,形成侧五角锥(叠于另一个多面体的面)、五角锥柱(叠于棱柱)和五角锥反角柱(叠于反棱柱)。[12]例如,将五角锥叠于正十二面体的每个面,组成五角化十二面体;用五角锥星形化十二面体,组成小星形十二面体;将五角锥叠于五角反棱柱的两个底面,组成正二十面体。[13]部分约翰逊多面体的构造涉及侧五角锥和五角锥柱:五角锥柱 、五角锥反角柱 、双五角锥 、双五角锥柱 、侧锥正十二面体 、对二侧锥正十二面体 、间二侧锥正十二面体 、三侧锥正十二面体 。[14]同样,多面体可以缺少五角锥,形成欠五角锥。从正二十面体减去五角锥,可以形成正二十面体欠邻二侧锥 和正二十面体欠三侧锥 。[15]
在立体化学中,有些原子簇的结构为五角锥形分子构型。中心原子为具有一个孤电子对的主族元素原子,因此根据价层电子对互斥理论形成五角锥形。[16]巢式硼烷碳酸盐CB5H9便是一例。[17]
Fejer et al. (2009)用五角锥和六角锥碎片建构出病毒的衣壳,之所以选择这些形状,是因为它们最近似自然病毒的蛋白质亚基。他们调整锥体之间的引力和斥力后,发现锥体可以自己堆砌成自然出现的二十面体形衣壳。[18]
Gryzunova (2017) studied the relaxation of internal elastic stress fields due to disclinations in twinned copper particles. Such a shape is the pentagonal pyramid, which allows growth to a large size and preserves symmetry. This can be done by activating cathode by the process of initial crystal growth in the electrolyte, by the movement of aluminum and silicon oxides' abrasive particles.[19]
参考文献
[编辑]注释
[编辑]- ^ 1.0 1.1 1.2 Johnson (1966).
- ^
Ball & Coxeter (1987), p. 130
- Grgić 等人 (2022), p. 476
- ^ Smith (2000),第98页.
- ^
Calter & Calter (2011), p. 198
- Polya (1954), p. 138
- ^ Pisanski & Servatius (2013),第21页.
- ^ Wohlleben (2019),第485–486页.
- ^ Uehara (2020),第62页.
- ^ Hartshorne (2000), p. 464
- ^ Calter & Calter (2011),第198页.
- ^ Berman (1971).
- ^ Weisstein, Eric W. (编). Pentagonal Pyramid. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2020-04-12] (英语).
- ^ Slobodan, Obradović & Ðukanović (2015).
- ^ Çolak & Gelişgen (2015)
- ^ Rajwade (2001), pp. 84–88. 在表12.3中,代表角柱,代表角反棱柱。
- ^ Gailiunas (2001).
- ^ Petrucci, Harwood & Herring (2002),第414页.
- ^ Macartney (2017),第482页.
- ^ Fejer et al. (2009).
- ^ Gryzunova (2017).
文献
[编辑]- Ball, W. W. R.; Coxeter, H. S. M. Mathematical Recreations and Essays. Dover Publications. 1987. ISBN 978-0-486-25357-2.
- Berman, Martin. Regular-faced convex polyhedra. Journal of the Franklin Institute. 1971, 291 (5): 329–352. MR 0290245. doi:10.1016/0016-0032(71)90071-8.
- Calter, Paul A.; Calter, Michael A. Technical Mathematics. John Wiley & Sons. 2011. ISBN 978-0-470-53492-2.
- Çolak, Zeynep; Gelişgen, Özcan. New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron. Sakarya University Journal of Science. 2015, 19 (3): 353–360. doi:10.16984/saufenbilder.03497.
- Fejer, Szilard N.; James, Tim R. James; Hernández-Rojasc, Javier; Wales, David J. Energy landscapes for shells assembled from pentagonal and hexagonal pyramids. Physical Chemistry Chemical Physics. 2009, 11: 2098–2104. doi:10.1039/B818062H.
- Gailiunas, Paul. A Polyhedral Byway (PDF). Sarhangi, Reza; Jablan, Slavik (编). Bridges: Mathematical Connections in Art, Music, and Science (学位论文). Bridges Conference: 115–122. 2001.
- Grgić, Ivan; Karakašić, Mirko; Ivandić, Željko; Glavaš, Hrvoje. Glavaš, Hrvoje; Hadzima-Nyarko, Marijana; Karakašić, Mirko; Ademović, Naida; Avdaković, Samir , 编. 30th International Conference on Organization and Technology of Maintenance (OTO 2021): Proceedings of 30th International Conference on Organization and Technology of Maintenance (OTO 2021). International Conference on Organization and Technology of Maintenance. 2022. doi:10.1007/978-3-030-92851-3.
|contribution=
被忽略 (帮助) - Gryzunova, N. N. К вопросу о дисклинационной природе пентагональных пирамид с высокими ступенями роста электролитического происхождения [On the disclination nature of pentagonal pyramids with high growth steps of electrolytic origin]. Letters on Materials. 2017, 7 (1): 39–43. doi:10.22226/2410-3535-2017-1-39-43. 已忽略未知参数
|lang=
(建议使用|language=
) (帮助) - Hartshorne, Robin. Geometry: Euclid and Beyond. Undergraduate Texts in Mathematics. Springer-Verlag. 2000. ISBN 9780387986500.
- Johnson, Norman W. Convex polyhedra with regular faces. Canadian Journal of Mathematics. 1966, 18: 169–200. MR 0185507. S2CID 122006114. Zbl 0132.14603. doi:10.4153/cjm-1966-021-8
.
- Kappraff, Jay. Connections: The Geometric Bridge Between Art and Science 2nd. World Scientific. 2001. ISBN 981-02-4585-8.
- Macartney, D. H. Cucurbiturils in Drug Binding and Delivery. Gokel, George W.; Barbour, Leonard J. (编). Comprehensive Supramolecular Chemistry II. Elsevier. 2017. ISBN 978-0-12-803198-8.
- Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey. General Chemistry: Principles and Modern Applications 1. Prentice Hall. 2002. ISBN 9780130143297.
- Pisanski, Tomaž; Servatius, Brigitte. Configuration from a Graphical Viewpoint. Springer. 2013. ISBN 978-0-8176-8363-4. doi:10.1007/978-0-8176-8364-1.
- Polya, G. Mathematics and Plausible Reasoning: Induction and analogy in mathematics. Princeton University Press. 1954. ISBN 0-691-02509-6.
- Rajwade, A. R. Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Hindustan Book Agency. 2001. ISBN 978-93-86279-06-4. doi:10.1007/978-93-86279-06-4.
- Silvester, John R. Geometry: Ancient and Modern. Oxford University Publisher. 2001.
- Slobodan, Mišić; Obradović, Marija; Ðukanović, Gordana. Composite Concave Cupolae as Geometric and Architectural Forms (PDF). Journal for Geometry and Graphics. 2015, 19 (1): 79–91.
- Smith, James T. Methods of Geometry. John Wiley & Sons. 2000. ISBN 0-471-25183-6.
- Uehara, Ryuhei. Introduction to Computational Origami: The World of New Computational Geometry. Springer. 2020. ISBN 978-981-15-4470-5. doi:10.1007/978-981-15-4470-5.
- Wohlleben, Eva. Cocchiarella, Luigi , 编. ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics: 40th Anniversary - Milan, Italy, August 3-7, 2018. International Conference on Geometry and Graphics. Springer. 2019. ISBN 978-3-319-95588-9. doi:10.1007/978-3-319-95588-9.
|contribution=
被忽略 (帮助)