环磷酰胺
![]() | 此条目可参照英语维基百科相应条目来扩充。 (2022年9月24日) |
此条目翻译品质不佳。 (2012年6月11日) |
![]() | |
![]() | |
临床资料 | |
---|---|
读音 | /ˌsaɪkloʊˈfɒsfəˌmaɪd, -lə-/[1][2] |
商品名 | Lyophilized Cytoxan、Endoxan、Cytoxan、Neosar、Procytox,、Revimmune、 Cycloblastin |
AHFS/Drugs.com | Monograph |
MedlinePlus | a682080 |
怀孕分级 |
|
给药途径 | 口服给药, 静脉注射 |
ATC码 | |
法律规范状态 | |
法律规范 |
|
药物动力学数据 | |
生物利用度 | >75% (口服) |
血浆蛋白结合率 | >60% |
药物代谢 | 肝脏 |
生物半衰期 | 3–12小时 |
排泄途径 | 肾脏 |
识别信息 | |
| |
CAS号 | 50-18-0 ![]() |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.000.015 |
化学信息 | |
化学式 | C7H15Cl2N2O2P |
摩尔质量 | 261.08 g·mol−1 |
3D模型(JSmol) | |
熔点 | 2 °C(36 °F) |
| |
|
环磷酰胺 (INN:cyclophosphamide,另称cytophosphane,简称为CP),[3]是一种化学疗法药物和免疫抑制剂。[4]作化疗药物时,用于治疗淋巴瘤、多发性骨髓瘤、白血病、卵巢癌、乳癌、小细胞癌、神经母细胞瘤和肉瘤。[4]作免疫抑制剂时用于治疗肾病症候群、ANCA相关血管炎以及器官移植后等身体状况。[4][5]
环磷酰胺属于烷化剂和氮芥类药物。[4]据信其通过干扰DNA复制和RNA生成而发挥作用。[4]
大多数使用者会出现副作用。[4]常见的副作用有白血球计数降低、食欲不振、呕吐、脱发和膀胱出血。[4]其他严重副作用有于未来罹癌的风险增加、不孕、过敏反应和肺纤维化。[4]
环磷酰胺于1959年在美国获准用于医疗用途。[4]已收录在世界卫生组织基本药物标准清单之中。[6]
医疗用途
[编辑]环磷酰胺用于治疗癌症和自体免疫疾病。能迅速控制病情。然而因具有毒性,一旦个体病情稳定,应尽快更换为毒性较低的替代药物。患者在用药期间,必须定期接受实验室检查,以监测肾功能、预防药物引起的膀胱并发症并评估是否发生骨髓抑制。[7]
癌症
[编辑]
环磷酰胺的主要用途是与其他化疗药物联合使用,治疗淋巴瘤、某些形式的脑癌、神经母细胞瘤、白血病和一些实体肿瘤。[8]
自体免疫疾病
[编辑]环磷酰胺会降低免疫系统反应,但因担心其毒性作而少用于重症患者,对于传统疾病修饰抗风湿药物(DMARDs)治疗无效,且威胁生命的自体免疫疾病,环磷酰胺仍是一种重要的治疗药物。例如伴有严重狼疮性肾炎的全身性红斑狼疮可能对脉冲式环磷酰胺(在高剂量下,间歇性给予环磷酰胺)有反应。也用于治疗微小病变性肾病、[9]重度类风湿性关节炎、肉芽肿并多发性血管炎、[5]古巴斯彻氏症候群[10]和多发性硬化症。[11]
由于药物的潜在副作用(如闭经或原发性卵巢功能低下),环磷酰胺仅在治疗早期阶段使用,之后会被其他药物取代(如霉酚酸或是硫唑嘌呤)。[12][13]
原发性类淀粉沉积症
[编辑]有文献记录显示,环磷酰胺与沙利窦迈或来那度胺以及地塞米松联合使用,对于AL类淀粉沉积症的仿单标示外使用具有临床疗效。对于那些不适合进行自体干细胞移植的患者,环磷酰胺似乎可作为一种替代传统美法仑治疗的选择。。[14][8]
移植物对抗宿主疾病
[编辑]在异体造血干细胞移植手术中,移植物对抗宿主疾病(GVHD)是一大挑战,因为捐赠者的T细胞会攻击接受移植者的身体。为将GVHD的风险降低,通常会对先移植体进行T细胞耗竭处理。[15]此外,在半相合或单倍体相合的造血干细胞移植中,即使采用减低强度的预处理方案,移植后使用高剂量环磷酰胺也能有效减少GVHD发生。[16][17]
禁忌症
[编辑]环磷酰胺与其他烷化剂一样,对胎儿具致畸性,在孕妇中禁用(此药物被归为怀孕分级D类),除非是母亲生命受威胁的情况下。其他使用环磷酰胺的禁忌症有个体在母乳哺育期(对婴儿造成伤害),或有活动性感染、嗜中性白血球低下或膀胱毒性的状况。[8]
环磷酰胺有导致婴儿出现出生缺陷的可能性。第一孕期的胎儿接触到环磷酰胺,会出现一种被称为"环磷酰胺胚胎病"的异常模式,包括生长受限、耳朵和面部异常、缺少指头(手指和脚趾)和肢体发育不全。[18]
副作用
[编辑]环磷酰胺造成的不良反应与累积药物剂量有关,包括化疗引起的恶心和呕吐、[19]骨髓抑制、[20]胃痛、出血性膀胱炎、腹泻、皮肤/指甲变黑、脱发或头发稀疏、头发颜色和质地变化、嗜睡和严重的性腺毒性。其他副作用有容易瘀伤/出血、关节痛、口腔溃疡、现有伤口愈合缓慢、尿量减少或异常疲倦或虚弱。[21]潜在的副作用还有白血球减少症、感染、膀胱毒性和癌症。[22]
肺部损伤似乎很少见,[23]但可能出现两种临床模式:早期急性肺炎和慢性进行性肺纤维化。[24]心脏毒性主要会出现在接受高剂量治疗的个体。[25]
高剂量静脉注射环磷酰胺可能导致抗利尿分泌异常症(SIADH),为预防这种情况,医生通常会建议在施打环磷酰胺时,同时给予大量的静脉输液,以预防药物引起的膀胱炎,但可能导致致命的低钠血症。[26]SIADH通常与高剂量环磷酰胺相关,但纵然使用较低剂量以治疗发炎性疾病,仍有可能发生。[27]
膀胱出血
[编辑]丙烯醛(环磷酰胺的代谢产物)对膀胱上皮组织具有毒性,可能导致出血性膀胱炎,会出现血尿,偶尔还会出现排尿困难。[28]透过摄入足够的液体、避免夜间给药和使用美司钠(2-巯基乙烷磺酸钠,一种结合并解毒丙烯醛的硫氢基供体),可最大限度降低出血性膀胱炎的风险。[29]以间歇性方式进行环磷酰胺给药可降低累积药物剂量,减少膀胱暴露于丙烯醛,且在治疗狼疮肾炎方面与每日给药具有相同的疗效。[30]
感染
[编辑]因使用环磷酰胺而引起的嗜中性白血球减少症或淋巴细胞减少症,可能导致用药者容易罹患各种细菌、真菌和机会性感染。[31]目前并无已发表的指南针对接受免疫抑制药物治疗风湿性疾病患者需进行肺囊虫肺炎预防,但有些人主张在使用高剂量药物时应作预防。[32][33]
不孕症
[编辑]研究发现环磷酰胺会显著增加女性原发性卵巢功能低下和男性与女性不孕的风险,其可能性随着累积药物剂量和患者年龄增长而升高。这种不孕通常为暂时性,但也可能是永久性。[34]在间歇性环磷酰胺给药之前,让育龄妇女使用亮丙瑞林(人工合成激素),可将原发性卵巢功能低下和不孕的风险降低。[35]
癌症
[编辑]环磷酰胺是致癌物质,可能会增加罹患淋巴瘤、白血病、皮肤癌、膀胱移行细胞癌或其他恶性肿瘤的风险。[36]在接受环磷酰胺治疗后的头10年内,119名类风湿性关节炎患者中有5名发生骨髓增殖性肿瘤,包括急性白血病、非霍奇金淋巴瘤和多发性骨髓瘤,而另外119名无病史的类风湿性关节炎,且没接受环磷酰胺治疗的患者中仅发生1例慢性淋巴细胞白血病。[37]继发性急性骨髓性白血病被认为是由环磷酰胺诱导突变或选择高风险骨髓增殖所引起。[38]
这种风险可能取决于使用剂量和其他因素,包括个体病况、其他药剂或治疗方式(包括放射治疗)、治疗时间长度和强度。对于某些治疗方案,这种风险很罕见。例如,乳癌的CMF疗法)(其中累积剂量通常低于20克环磷酰胺)的急性骨髓性白血病(AML)风险低于1/2000,一些研究发现与一般人群相比,并未增加风险。涉及较高剂量的其他治疗方案可能带来1-2%或更高的风险。
药理学
[编辑]口服环磷酰胺会被迅速吸收,然后在肝脏中被混合功能氧化酶(细胞色素P450系统)转化为活性代谢物。[39][40]主要活性代谢物是4-羟基环磷酰胺,它与其互变异构物醛磷酰胺处于平衡状态。大部分醛磷酰胺随后被醛脱氢酶(ALDH)氧化,生成羧基环磷酰胺。少部分醛磷酰胺自由扩散到细胞中,在那里分解成两种化合物 - 磷酰胺芥和丙烯醛。[41]环磷酰胺的活性代谢物有高度蛋白结合功能,分布于所有组织,被认为可穿过胎盘,并会渗入母乳中。[42]
此药物属于𫫇唑磷烷类的特定药物群组。[43]
环磷酰胺代谢物主要以原形经尿液排出人体,个体有肾功能不全情况时,应适当调整药物剂量。[44]会改变肝脏微粒体酶活性的药物(例如,酒精、巴比妥类药物、利福平或苯妥英)可能导致环磷酰胺加速代谢为活性代谢物,而增加药物的药理作用和毒性作用。或者会抑制肝脏微粒体酶的药物(例如皮质类固醇、三环类抗忧郁药或别嘌醇)将导致环磷酰胺转化为代谢物的速度减慢,而降低治疗及毒性作用。[45]
环磷酰胺会降低血浆假性胆碱酯酶活性,并在与琥珀胆碱同时给药时,可能导致神经肌肉接点阻滞延长。[46][47]
作用机制
[编辑]环磷酰胺主要由其代谢物磷酰胺芥发挥作用。这种代谢物仅在醛脱氢酶(ALDH)水平低的细胞中形成。磷酰胺芥在鸟嘌呤N-7位置形成DNA链之间和链内的DNA交联(分别称为链间和链内交联)。此过程不可逆,并导致细胞凋亡。[48]
环磷酰胺的典型化疗毒性相对较小,因为骨髓干细胞、肝脏和肠道上皮组织中都存在相对高浓度的ALDH。ALDH透过将醛磷酰胺转化为羧基环磷酰胺,因羧基环磷酰胺不会产生毒性代谢物 - 磷酰胺芥和丙烯醛,而免受两者的毒性,并保护前述活跃增殖的组织。原因为羧基环磷酰胺不能进行β-氢消除反应,而阻止氮芥活化和随后的烷基化。[28][49][50]
环磷酰胺在适应性免疫疗法中可诱导有益的免疫调节作用。可能的机制为:[51]
透过环磷酰胺对受体宿主的预处理,特别是针对捐赠者T细胞,不仅能提升初始宿主的免疫力,更能显著增强过继性T细胞免疫疗法与主动疫苗接种的效果,最终促成可被客观验证的抗肿瘤免疫反应。
历史
[编辑]于约翰·霍普金斯大学及其肿瘤中心服务的O. M. Colvin在其关于环磷酰胺的开发及临床应用研究报告中提出:
环磷酰胺的主要有毒代谢物之一 - 磷酰胺芥,由Friedman和Seligman于1954年合成并提出报告[52]……据推测,氮原子上有磷酸键可让氮芥部分失活,但磷酸键会在胃癌和其他磷酰胺酶含量高的肿瘤中被裂解。然而,在环磷酰胺的临床疗效得到证实后进行的研究中,磷酰胺芥被证明在体外具有细胞毒性(省略脚注),但在体内具有较低的治疗指数。[53]
环磷酰胺和相关的氮芥衍生的烷化剂异环磷酰胺由德国药理学家Norbert Brock和德国制药公司ASTA(现已并入百特国际)开发。[54]Brock和他的团队合成并筛选1,000多种候选𫫇唑磷烷化合物。[55]他们将基础氮芥转化为无毒的"输送形式"。这种输送形式是一种前体药物,随后被主动运输到癌细胞中。一旦进入细胞,前药就会被酶转化为活性及有毒的形式。首次临床试验结果于1950年代末发表。[56][57][58]它于1959年被美国食品药物管理局(FDA)批准,是被核准的第8种细胞毒性抗癌药物。[28]
社会与文化
[编辑]代表环磷酰胺的缩写 - CP - 很常见,但在医学中缩写药名并非适合做法。[59]
研究
[编辑]由于此药物对免疫系统的影响,而被用于动物研究。在啮齿动物腹腔注射环磷酰胺,[60]可作以下应用:
- 美国环境保护局(EPA)在进行微生物商业活动通知(MCAN)审查时,可能会关注工程微生物潜在的人类致病性。特别是对于那些可能会接触消费者的细菌,而要求在免疫功能受到抑制的老鼠身上进行微生物测试。[61]
- 当研究新药的免疫反应时,环磷酰胺可提供一个阳性对照(因为环磷酰胺的效果为已知)。[62]
参见
[编辑]- ^ cyclophosphamide – definition of cyclophosphamide in English from the Oxford dictionary. OxfordDictionaries.com. [2016-01-20]. (原始内容存档于2012-08-25).
- ^ cyclophosphamide. Merriam-Webster Dictionary.
- ^ NCI Drug Dictionary. National Cancer Institute. 2011-02-02 [2016-12-20]. (原始内容存档于2015-04-25).
- ^ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 Cyclophosphamide. The American Society of Health-System Pharmacists. [2016-12-08]. (原始内容存档于2017-01-02).
- ^ 5.0 5.1 Pagnoux C. Updates in ANCA-associated vasculitis. European Journal of Rheumatology. September 2016, 3 (3): 122–133. PMC 5058451
. PMID 27733943. doi:10.5152/eurjrheum.2015.0043.
- ^ World Health Organization. World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. 2019. hdl:10665/325771
. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
- ^ King, Catherine; Harper, Lorraine. Avoidance of Harm From Treatment for ANCA-Associated Vasculitis. Current Treatment Options in Rheumatology. 2017-11-13, 3 (4): 230–243 [2025-02-27]. doi:10.1007/s40674-017-0082-y.
- ^ 8.0 8.1 8.2 Brayfield, A (编). Cyclophosphamide: Martindale: The Complete Drug Reference. MedicinesComplete. London, UK: Pharmaceutical Press. 2017-01-09 [2017-08-12].
- ^ Brenner & Rector's The Kidney 11th. Philadelphia: Elsevier. 2020: 1007–1091. ISBN 978-0-323-53265-5.
- ^ DeVrieze BW, Hurley JA. Goodpasture Syndrome (Anti-glomerular Basement Membrane Antibody Disease). StatPearls. Treasure Island, USA: StatPearls Publishing. 2019. PMID 29083697.
- ^ La Mantia L, Milanese C, Mascoli N, D'Amico R, Weinstock-Guttman B. Cyclophosphamide for multiple sclerosis. The Cochrane Database of Systematic Reviews. January 2007, 2007 (1): CD002819. PMC 8078225
. PMID 17253481. doi:10.1002/14651858.CD002819.pub2.
- ^ Davis LS, Reimold AM. Research and therapeutics-traditional and emerging therapies in systemic lupus erythematosus. Rheumatology. April 2017, 56 (suppl_1): i100–i113. PMC 5850311
. PMID 28375452. doi:10.1093/rheumatology/kew417.
- ^ Singh JA, Hossain A, Kotb A, Wells GA. Comparative effectiveness of immunosuppressive drugs and corticosteroids for lupus nephritis: a systematic review and network meta-analysis. Systematic Reviews. September 2016, 5 (1): 155. PMC 5020478
. PMID 27619512. doi:10.1186/s13643-016-0328-z
.
- ^ Gertz MA. Immunoglobulin light chain amyloidosis: 2014 update on diagnosis, prognosis, and treatment. American Journal of Hematology. December 2014, 89 (12): 1132–40. PMID 25407896. S2CID 85480421. doi:10.1002/ajh.23828.
- ^ Or-Geva N, Reisner Y. The evolution of T-cell depletion in haploidentical stem-cell transplantation. British Journal of Haematology. March 2016, 172 (5): 667–84. PMID 26684279. S2CID 1093277. doi:10.1111/bjh.13868
.
- ^ Fuchs EJ. HLA-haploidentical blood or marrow transplantation with high-dose, post-transplantation cyclophosphamide. Bone Marrow Transplantation. June 2015, 50 (Suppl 2): S31–6. PMC 4634886
. PMID 26039204. doi:10.1038/bmt.2015.92.
- ^ Robinson TM, O'Donnell PV, Fuchs EJ, Luznik L. Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide. Seminars in Hematology. April 2016, 53 (2): 90–7. PMC 4806368
. PMID 27000732. doi:10.1053/j.seminhematol.2016.01.005.
- ^ Enns GM, Roeder E, Chan RT, Ali-Khan Catts Z, Cox VA, Golabi M. Apparent cyclophosphamide (cytoxan) embryopathy: a distinct phenotype?. American Journal of Medical Genetics. September 1999, 86 (3): 237–41. PMID 10482872. doi:10.1002/(SICI)1096-8628(19990917)86:3<237::AID-AJMG8>3.0.CO;2-V
.
- ^ Singh G, Fries JF, Williams CA, Zatarain E, Spitz P, Bloch DA. Toxicity profiles of disease modifying antirheumatic drugs in rheumatoid arthritis. The Journal of Rheumatology. February 1991, 18 (2): 188–94. PMID 1673721.
- ^ Lohrmann HP. The problem of permanent bone marrow damage after cytotoxic drug treatment. Oncology. 1984, 41 (3): 180–4. PMID 6374556. doi:10.1159/000225819.
- ^ Cyclophosphamide Vial - Uses, Side Effects, and More. WebMD. [2025-02-28].
- ^ Singh JA, Hossain A, Kotb A, Wells G. Risk of serious infections with immunosuppressive drugs and glucocorticoids for lupus nephritis: a systematic review and network meta-analysis. BMC Medicine. September 2016, 14 (1): 137. PMC 5022202
. PMID 27623861. doi:10.1186/s12916-016-0673-8
.
- ^ Twohig KJ, Matthay RA. Pulmonary effects of cytotoxic agents other than bleomycin. Clinics in Chest Medicine. March 1990, 11 (1): 31–54. PMID 1691069. doi:10.1016/S0272-5231(21)00670-5.
- ^ Malik SW, Myers JL, DeRemee RA, Specks U. Lung toxicity associated with cyclophosphamide use. Two distinct patterns. American Journal of Respiratory and Critical Care Medicine. December 1996, 154 (6 Pt 1): 1851–6. PMID 8970380. doi:10.1164/ajrccm.154.6.8970380.
- ^ Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC. Cardiotoxicity of cancer therapy. Journal of Clinical Oncology. October 2005, 23 (30): 7685–96. PMID 16234530. doi:10.1200/JCO.2005.08.789.
- ^ Bressler RB, Huston DP. Water intoxication following moderate-dose intravenous cyclophosphamide. Archives of Internal Medicine. March 1985, 145 (3): 548–9. PMID 3977522. doi:10.1001/archinte.145.3.548.
- ^ Salido M, Macarron P, Hernández-García C, D'Cruz DP, Khamashta MA, Hughes GR. Water intoxication induced by low-dose cyclophosphamide in two patients with systemic lupus erythematosus. Lupus. 2003, 12 (8): 636–9. PMID 12945725. S2CID 26125211. doi:10.1191/0961203303lu421cr.
- ^ 28.0 28.1 28.2 Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: golden anniversary. Nature Reviews. Clinical Oncology. November 2009, 6 (11): 638–47. PMID 19786984. S2CID 18219134. doi:10.1038/nrclinonc.2009.146.
- ^ Monach PA, Arnold LM, Merkel PA. Incidence and prevention of bladder toxicity from cyclophosphamide in the treatment of rheumatic diseases: a data-driven review. Arthritis and Rheumatism. January 2010, 62 (1): 9–21. PMID 20039416. doi:10.1002/art.25061.
- ^ Boumpas DT, Austin HA, Vaughn EM, Klippel JH, Steinberg AD, Yarboro CH, Balow JE. Controlled trial of pulse methylprednisolone versus two regimens of pulse cyclophosphamide in severe lupus nephritis. Lancet. September 1992, 340 (8822): 741–5. PMID 1356175. S2CID 8800101. doi:10.1016/0140-6736(92)92292-n.
- ^ Pryor BD, Bologna SG, Kahl LE. Risk factors for serious infection during treatment with cyclophosphamide and high-dose corticosteroids for systemic lupus erythematosus. Arthritis and Rheumatism. September 1996, 39 (9): 1475–82. PMID 8814058. doi:10.1002/art.1780390906.
- ^ Suryaprasad A, Stone JH. When is it safe to stop Pneumocystis jiroveci pneumonia prophylaxis? Insights from three cases complicating autoimmune diseases. Arthritis and Rheumatism. July 2008, 59 (7): 1034–9. PMID 18576286. doi:10.1002/art.23822.
- ^ Kronbichler A, Jayne DR, Mayer G. Frequency, risk factors and prophylaxis of infection in ANCA-associated vasculitis. European Journal of Clinical Investigation (Review). March 2015, 45 (3): 346–68. PMID 25627555. S2CID 870510. doi:10.1111/eci.12410
.
- ^ Balow JE, Austin HA, Tsokos GC, Antonovych TT, Steinberg AD, Klippel JH. NIH conference. Lupus nephritis. Annals of Internal Medicine. January 1987, 106 (1): 79–94. PMID 3789582. doi:10.7326/0003-4819-106-1-79.
- ^ Periti P, Mazzei T, Mini E. Clinical pharmacokinetics of depot leuprorelin. Clinical Pharmacokinetics. 2002, 41 (7): 485–504. PMID 12083977. S2CID 10873321. doi:10.2165/00003088-200241070-00003.
- ^ Bernatsky S, Clarke AE, Suissa S. Hematologic malignant neoplasms after drug exposure in rheumatoid arthritis. Archives of Internal Medicine. February 2008, 168 (4): 378–81. PMID 18299492. doi:10.1001/archinternmed.2007.107
.
- ^ Radis CD, Kahl LE, Baker GL, Wasko MC, Cash JM, Gallatin A, Stolzer BL, Agarwal AK, Medsger TA, Kwoh CK. Effects of cyclophosphamide on the development of malignancy and on long-term survival of patients with rheumatoid arthritis. A 20-year followup study. Arthritis and Rheumatism. August 1995, 38 (8): 1120–7. PMID 7639809. doi:10.1002/art.1780380815.
- ^ Larson RA. Etiology and management of therapy-related myeloid leukemia. Hematology. American Society of Hematology. Education Program. 2007, 2007: 453–9. PMID 18024664. doi:10.1182/asheducation-2007.1.453
.
- ^ Cohen JL, Jao JY. Enzymatic basis of cyclophosphamide activation by hepatic microsomes of the rat. The Journal of Pharmacology and Experimental Therapeutics. August 1970, 174 (2): 206–10 [2014-05-02]. PMID 4393764. (原始内容存档于2021-08-28).
- ^ Huttunen KM, Raunio H, Rautio J. Prodrugs--from serendipity to rational design. Pharmacological Reviews. September 2011, 63 (3): 750–71. PMID 21737530. S2CID 25381232. doi:10.1124/pr.110.003459.
- ^ Boddy AV, Yule SM. Metabolism and pharmacokinetics of oxazaphosphorines. Clinical Pharmacokinetics. April 2000, 38 (4): 291–304. PMID 10803453. S2CID 39787288. doi:10.2165/00003088-200038040-00001.
- ^ Wiernik PH, Duncan JH. Cyclophosphamide in human milk. Lancet. May 1971, 1 (7705): 912. PMID 4102054. doi:10.1016/s0140-6736(71)92474-3.
- ^ Giraud B, Hebert G, Deroussent A, Veal GJ, Vassal G, Paci A. Oxazaphosphorines: new therapeutic strategies for an old class of drugs. Expert Opinion on Drug Metabolism & Toxicology. August 2010, 6 (8): 919–938. PMID 20446865. S2CID 695545. doi:10.1517/17425255.2010.487861.
- ^ Haubitz M, Bohnenstengel F, Brunkhorst R, Schwab M, Hofmann U, Busse D. Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency. Kidney International. April 2002, 61 (4): 1495–501. PMID 11918757. doi:10.1046/j.1523-1755.2002.00279.x
.
- ^ Donelli MG, Bartosek I, Guaitani A, Martini A, Colombo T, Pacciarini MA, Modica R. Importance of pharmacokinetic studies on cyclophosphamide (NSC-26271) in understanding its cytotoxic effect. Cancer Treatment Reports. April 1976, 60 (4): 395–401. PMID 1277213.
- ^ Koseoglu V, Chiang J, Chan KW. Acquired pseudocholinesterase deficiency after high-dose cyclophosphamide. Bone Marrow Transplantation. December 1999, 24 (12): 1367–8. PMID 10627651. S2CID 22946564. doi:10.1038/sj.bmt.1702097.
- ^ Vigouroux D, Voltaire L. [Prolonged neuromuscular block induced by mivacurium in a patient treated with cyclophosphamide] [Prolonged neuromuscular block induced by mivacurium in a patient treated with cyclophosphamide]. Annales Françaises d'Anesthésie et de Réanimation. 1995, 14 (6): 508–10. PMID 8745976. doi:10.1016/S0750-7658(05)80493-9. INIST:2947795 (法语).
- ^ Hall AG, Tilby MJ. Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Reviews. September 1992, 6 (3): 163–73. PMID 1422285. doi:10.1016/0268-960X(92)90028-O.
- ^ Kohn FR, Sladek NE. Aldehyde dehydrogenase activity as the basis for the relative insensitivity of murine pluripotent hematopoietic stem cells to oxazaphosphorines. Biochemical Pharmacology. October 1985, 34 (19): 3465–71. PMID 2996550. doi:10.1016/0006-2952(85)90719-1.
- ^ Friedman OM, Wodinsky I, Myles A. Cyclophosphamide (NSC-26271)-related phosphoramide mustards- recent advances and historical perspective. Cancer Treatment Reports. April 1976, 60 (4): 337–46. PMID 1277209.
- ^ Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Seminars in Immunopathology. July 2011, 33 (4): 369–83. PMID 21611872. S2CID 3360104. doi:10.1007/s00281-011-0245-0.
- ^ Friedman OM, Seligman AM. Preparation of N-Phosphorylated Derivatives of Bis-β-chloroethylamine1a. Journal of the American Chemical Society. 1954, 76 (3): 655–8. Bibcode:1954JAChS..76..655F. doi:10.1021/ja01632a006.
- ^ Colvin OM. An overview of cyclophosphamide development and clinical applications. Current Pharmaceutical Design. August 1999, 5 (8): 555–60. PMID 10469891. doi:10.2174/1381612805666230110214512.
- ^ 美国专利第3,018,302号
- ^ Brock N. The history of the oxazaphosphorine cytostatics. Cancer. August 1996, 78 (3): 542–7. PMID 8697402. doi:10.1002/(SICI)1097-0142(19960801)78:3<542::AID-CNCR23>3.0.CO;2-Y
.
- ^ Wilmanns H. Chemotherapie maligner Tumoren [Chemotherapy of malignant tumors]. Asta-Forschung und Therapie. 1958. OCLC 73296245 (德语).[页码请求]
- ^ Gross R, Wulf G. Klinische und experimentelle Erfahrungen mit zyk lischen und nichtzyklischen Phosphamidestern des N-Losl in der Chemotherapie von Tumoren [Clinical and experimental experiences with metallic cyclical and non-cyclical Phosphamidestern the N-losl in the chemotherapy of tumors]. Strahlentherapie. 1959, 41: 361–7 (德语).
- ^ Brock N. Oxazaphosphorine cytostatics: past-present-future. Seventh Cain Memorial Award lecture. Cancer Research. January 1989, 49 (1): 1–7. PMID 2491747.
- ^ Institute for Safe Medication Practices, ISMP's List of Error-Prone Abbreviations, Symbols, and Dose Designations (PDF), (原始内容存档 (PDF)于2011-10-27).
- ^ Zuluaga AF, Salazar BE, Rodriguez CA, Zapata AX, Agudelo M, Vesga O. Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases. BMC Infectious Diseases. March 2006, 6 (1): 55. PMC 1434751
. PMID 16545113. doi:10.1186/1471-2334-6-55
(英语).
- ^ EPA: Notifications, FY 1998 to Present - Biotechnology Program under the Toxic Substances Control Act (TSCA) | New Chemicals Program | US EPA. [2015-07-01]. (原始内容存档于2015-06-21).
- ^ Huyan XH, Lin YP, Gao T, Chen RY, Fan YM. Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice. International Immunopharmacology. September 2011, 11 (9): 1293–7. PMID 21530682. doi:10.1016/j.intimp.2011.04.011.
外部链接
[编辑]- Cyclophosphamide. Drug Information Portal. U.S. National Library of Medicine.
- 美国专利第3,018,302号 Novel cyclic phosphoric acid ester amides, and the production thereof. (patent for cyclophosphamide).